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Abstract — Learning recommender models from vast amounts of behavioral data has become a mainstream paradigm in recent information sys-
tems. Conversely, with privacy awareness grown, there has been increasing attention to the removal of sensitive or outlier data from well-trained
recommendation models (known as recommendation unlearning). However, current unlearning methods primarily focus on fully/partially retraining
the entire model. Despite considerable performance, it inevitably introduces significant efficiency bottlenecks, which is impractical for latency-sensitive
streaming services. While recent efforts exploit efficient unlearning in point-wise recommender tasks, these approaches overlook the partial order rela-
tionships between items, resulting in suboptimal performance in both recommendation and unlearning capabilities. In light of this, we explore learning
to Unlearn for Bayesian Personalized Ranking (UBPR) via influence function, which relies on a pair-wise ranking loss to model user preferences and
item characteristics, making unlearning more challenging than in point-wise settings. Specifically, we propose an influence function-guided unlearning
framework tailored for pair-wise ranking models to efficiently perform unlearning requests, which involves unlearning partial order relationships while
handling negative samples appropriately during the unlearning process. Besides, we prove that our proposed method can theoretically match the
performance of retraining counterparts. Finally, we conduct extensive experiments to validate the effectiveness and efficiency of our model.
Keywords — Recommendation unlearning, Influence function, Bayesian personalized ranking, The right to be forgotten.

I. Introduction
Recommender systems play a crucial role in shaping the on-
line experience of users across various digital services, in-
cluding social media, entertainment, and e-commerce [1–3].
These systems typically learn a recommender model from
historical interactions, with model parameters memorizing
user behaviors to provide personalized recommendations [4–
8]. Recently, the need to remove certain training data, such
as sensitive personal data or outlier data points, from well-
trained models has gained prominence due to ethical and
legal concerns, such as GDPR [9]. Specifically, from the
perspective of individual users, there may be requests to
delete specific sensitive interactions from the entire training
dataset [10]. Besides, from the system’s standpoint, elim-
inating anomalous or poisoned data injected by attackers
upon detection is essential for achieving robust recommen-
dations [11–13]. On this basis, recommendation unlearning

∗Co-first authors.

emerges as a promising research direction to build the next-
generation trustworthy recommender systems [14].

Towards this end, current mainstream recommendation
unlearning models mainly exploit straightforward and effec-
tive unlearning mechanisms by retraining from scratch with
the remaining data, thus allowing the physical removal of
requested data from the model [15, 16]. According to the
scale of utilized data, retraining methods can primarily fall
into two categories: full retraining [17, 18] and partial re-
training [19, 20]. Full retraining involves retraining the entire
model with all remaining data, despite considerable perfor-
mance, but it is often time-consuming and computationally
expensive [17], limiting its practical applicability. Partial re-
training refers to the process of partitioning the entire dataset
and the complete model into multiple sections, followed by
conducting small-scale retraining on specific partitions to ac-
celerate the unlearning process [19]. However, partial retrain-
ing is not always effective compared to full retraining, as
both model partitioning and data partitioning can negatively
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impact recommendation performance [21]. Besides, the un-
derlying assumption for efficient unlearning through partial
retraining is that the requested unlearning data is typically
distributed in one or few partitions, which is impractical in
real-world recommender systems.

Recently, some pioneering works have explored efficient
unlearning at different granularities in recommender tasks.
Specifically, Christian et al. incorporate adversarial training
into the classical variational auto-encoder architecture, in-
troducing a novel model called adversarial variational auto-
encoder with multinomial likelihood. This model is designed
to eliminate implicit information related to protected at-
tributes, such as genders or ages, while maintaining recom-
mendation performance [22]. Besides, Yuan et al. propose
a novel federated recommendation unlearning model to ex-
plore machine unlearning in federated recommender systems,
enabling it to efficiently eliminate the influence of specific
clients and complete the recovery process. The inspiration
comes from the log-based rollback mechanism used in trans-
actions in database management systems [23]. From another
perspective, Zhang et al. introduce an efficient recommenda-
tion unlearning framework to update the model parameters
without retraining by estimating the impact of the requested
unlearning data on the target model [21]. All of the above
methods aim to strike a reasonable balance between preserv-
ing recommendation performance and unlearning efficiency.

Although the above methods can efficiently achieve rec-
ommendation unlearning, we argue there are still some limi-
tations in the following aspects. Firstly, existing methods pri-
marily focus on unlearning requests on point-wise collabo-
rative filtering tasks (e.g., mean squared error loss and bi-
nary cross-entropy loss, etc.), neglecting the inherent partial
order relationships among items. This oversight hinders the
optimization of both recommendation performance and un-
learning efficiency. Secondly, the mentioned approaches re-
quire specialized unlearning method designs for different un-
learning scenarios. For instance, using adversarial training to
unlearn attribute information or employing rollback mech-
anisms to unlearn client information. This situation, which
requires designing specific methods for each scenario, may
limit the generality and scalability of the approach.

To address the above challenges, we aim to propose a
unified recommendation unlearning framework that can ef-
ficiently handle the unlearning requests while capturing the
item’s partial order relationships. Specifically, we introduce
an influence function-guided unlearning approach designed
for pair-wise ranking loss, which considers both the partial or-
der relationships between items and the constraints between
negative sample pairs during the unlearning process. Besides,
from a theoretical perspective, we prove that, under certain
assumptions, the proposed approach is almost equivalent to
the retraining method in terms of recommendation perfor-
mance. Finally, we validate the superiority of the proposed

method in terms of recommendation performance and un-
learning efficiency through extensive experiments. Overall,
the main contributions of this work are listed as follows:

• We propose an influence function-guided unlearning
framework tailored for pair-wise ranking loss to ef-
ficiently perform unlearning requests, which involves
unlearning partial order relationships among items
while handling negative samples appropriately during
the unlearning process.

• From the theoretical perspective, we prove that, under
certain assumptions, the proposed approach is almost
equivalent to the retraining counterpart in terms of rec-
ommendation performance.

• Extensive experiments on two real-world datasets
demonstrate the advantages of our model on effective-
ness and efficiency over several state-of-the-art models.

II. Related Work
We briefly review two related fields to this work: matrix fac-
torization [1] and recommendation unlearning [15].

1. Matrix Factorization
Matrix factorization (MF), also known as latent factor model,
has been the dominant technique in recommender system
community for many decades [4]. The objective of MF is
to embed users and items into a shared latent subspace,
where the similarities between users and items are computed
through inner products. Due to its high capability and scala-
bility, MF has garnered significant attention over the years.
Several pioneering works have aimed to enhance MF by
integrating it with other advanced models [6, 24, 25]. For
instance, He et al. introduced neural collaborative filtering
(NCF) [6], which integrates a multi-layer perceptron into
MF, allowing for improved modeling of user-item interac-
tions through non-linear transformations. Apart from fusing
advanced models, some recent works have attempted to in-
corporate the idea of learning to rank on top of MF to model
the partial order relationships among items [5, 26, 27]. For
instance, Rendle et al. proposed the bayesian personalized
ranking (BPR) framework to model the ranking relationships
between items from a Bayesian perspective [5], indicating
that interacted items by a user should be ranked higher than
non-interacted items, thereby achieving fine-grained prefer-
ence modeling. Subsequent works have attempted to incor-
porate more complex ordinal relationships on the basis of
BPR, such as VBPR [26], DVBPR [27]. In summary, various
studies have explored the effectiveness of combining complex
models or learning-to-rank techniques to improve vanilla MF.

2. Recommendation Unlearning
Recommendation unlearning is a process designed to elim-
inate the impact of a specified set of training data upon re-
quest from a trained recommender model [15]. According
to the degree of unlearning, current state-of-the-art methods
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can be broadly categorized into two groups: exact recommen-
dation unlearning [19, 20, 28] and approximate recommen-
dation unlearning [23, 29]. Exact recommendation unlearn-
ing aims to entirely eliminate the influence of the requested
data from the recommendation model [19], while approxi-
mate recommendation unlearning focuses on achieving for-
getting guarantees in a statistical sense [29]. Besides, from
the perspective of model training mechanisms, current works
can be grouped into three types of unlearning algorithms: data
reorganization-based [30, 31], model optimization-based [21,
32], and training mechanism-based recommendation unlearn-
ing [16, 19]. Among them, data reorganization-based un-
learning models, aim to achieve unlearning by manipulat-
ing the distribution of data [30, 33]. For instance, IMCor-
rect [33] achieves efficient recommendation unlearning by
correcting the interaction matrix. The model optimization-
based unlearning methods primarily focus on three aspects of
the model, such as the loss function [28, 34], influence func-
tion [21], and gradient updates [32]. They update the model’s
parameters to match or approximate the parameter distribu-
tion of the retrained model. For example, Zhang et al. in-
troduced an efficient recommendation unlearning framework
aimed at updating the model parameters without retraining.
This is achieved by estimating the impact of the requested un-
learning data on the target model [21]. Training mechanism-
based methods modify the training structure or pipeline to
efficiently achieve unlearning, and specific methods include
partial retraining [19, 35, 36], model fine-tuning [18], and
federated unlearning [23]. For instance, RecEraser divides
the training set into multiple shards and trains a sub-model
for each shard. When an unlearning request is received, un-
learning can be effectively achieved by only retraining the af-
fected sub-model [19]. Ultrare [35] and RRL [36] also adopt
such strategy. Different from these methods, we attempt to
introduce an efficient unlearning approach with the notion of
pair-wise learning, thus achieving the dual advantages of rec-
ommendation performance and unlearning efficiency.

III. Methodology
In this section, we first present the preliminaries of the
bayesian personalized ranking model, and then we derive an
influence function-based Unlearning framework for Bayesian
Personalized Ranking (UBPR).

1. Preliminaries
Matrix Factorization is a popular method in recommender
systems, which decomposes a sparse rating matrix into two
low-rank matrices that represent the latent feature vectors of
users and items, respectively. These latent traits can reflect
the user’s interests and the attributes of the item, allowing for
more accurate and flexible recommendations.

Formally, let u denote a user and i denote an item, then
the preferences between users and items can be expressed as
pT
uqi, where pu ∈ RK denotes the embedding vector of user

u, qi ∈ RK denotes the embedding vector of item i, and
K is the length of the embedding vector. Generally, for for
the set of all users U and the set of all items I, the model
optimization objective is as follows:

Θ = argmin
Θ

∑
u,i

(rui − pT
uqi)

2 + λ∥Θ∥2, (1)

where Θ = {P,Q} = {{pu}u∈U , {qi}i∈I} is the model pa-
rameters (i.e., the set of all user and item embedding vectors)
and R = {rui}u×i is the original rating matrix.

Even though matrix factorization is designed for the item
prediction task of personalized recommendation, it is not di-
rectly optimized for ranking. Meanwhile, it can not capture
the inherent partial order relationships among items. Ren-
dle et al. introduce a Bayesian Personalized Ranking (BPR),
which is based on implicit feedback data [5]. It ranks items by
the maximum posterior probability obtained from a Bayesian
analysis of the problem, which in turn generates recommen-
dations. Considering the inherent partial order relationships
among items, it introduces negative sampling based on the as-
sumption that observed interactions should get higher ranking
score than the unobserved ones. Formally, let ŷui(Θ) denote
pT
uqi, the loss function of BPR is as follows:

LBPR(D|Θ) =
∑

(u,i,j)∈D

− lnσ(ŷui(Θ)− ŷuj(Θ))+λ||Θ||2,

(2)
where σ(·) is the sigmoid function and λ is model specific
regularization. For dataset D, the elements in each triple in-
stance (u, i, j) represent the user u, the observed item i ∈ Iu,
and the randomly sampled unobserved item j ∈ I \ Iu (i.e.,
negative sample), respectively, where I denotes the whole
item set and Iu denotes the set of all the items which in-
teract with the specific user u. Minimizing the loss function
by stochastic gradient descent (SGD) algorithm, it can gen-
erate parameters Θ containing a user embedding matrix and
an item embedding matrix. Consequently, for each user u, we
can calculate the rating ŷui(Θ) over all items to obtain a per-
sonalized list, and then recommend items for each user.

2. The Proposed UBPR Model
Given a set of implicit feedback data D, through iterative op-
timization, the recommender model can obtain the optimum
parameters Θ. Due to the reason of privacy or security, the
subset Df ⊆ D needs to be removed on both the data level
and the recommender model level to obtain another parame-
ters Θ∗, and achieve the same effectiveness as model retrain-
ing on the retaining dataset Dr = D \ Df , this process is
called recommendation unlearning. Let Θ′ denote the param-
eters after model retraining, the unlearning process can be
presented as Θ→Θ∗ ≃ Θ′.

For the majority of matrix factorization models, we only
need to remove the effect of each (u, i) ∈ Df on parameters
updates. Retraining the model from scratch may be a better
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option when the |Dr| is relatively small to the point where
retraining is costly. However, during the process of updating
the parameters of the BPR model, we not only considered the
implicit feedback user-item pair (u, i) itself, but also sampled
negative feedback item j in order to take into account item’s
partial order relationship. In this case, retraining the model
from scratch will be more time-consuming owing to the in-
crease in the amount of dataset due to sampling. Meanwhile,
even if some of the existing unlearning algorithms can cope
with the time-consuming problem, they are unable to make a
good proof that the sample-related inter-item partial order re-
lationship learned during training is removed from the model.
So it is vital to design an efficient unlearning algorithm that
approximately or fully attains the effectiveness of retraining.

Formally, for the BPR model, we represent the loss func-
tion Eq. (2) for short by L(D|Θ), then the original parameters
Θ can be obtained by optimizing the following objective:

Θ = argmin
Θ

1

|D|
L(D|Θ). (3)

After removing subset Df from D, the parameters of the
retrained model can be obtained by a new optimization ob-
jective as follows:

Θ′ = argmin
Θ

1

|Dr|
L(Dr|Θ)

= argmin
Θ

[
1

|Dr|
L(D|Θ)− 1

|Dr|
L(Df |Θ)].

(4)

Based on the above formulation, we attempt to utilize the
difference between the two optimization objectives to erase
the effect of the data to be removed by a closed-form update.

Inspired by influence functions [37], we can efficiently
approximate the effect of some particular training points on a
model’s prediction. By quantitatively calculating this effect,
we can obtain these points’ contribution to the model updat-
ing process, which is known as the influence function. Ulti-
mately, by erasing this impact from the original parameters,
we can achieve a comparable effectiveness as retraining. For-
mally, we first upweight the loss of the subset Df by some
small ϵ on the original optimization objective (Eq. (3)), which
generates a new parameters as follows:

Θϵ = argmin
Θ

[
1

|D|
L(D|Θ) + ϵL(Df |Θ)]. (5)

Due to the influence of the upweighted loss over Df , the
changes in parameters ∆ϵ,Θ can be expressed as follows and
its derivation is given by Proof 3.2:

∆ϵ,Θ = Θϵ −Θ = −ϵH−1
Θ ∇ΘL(Df |Θ), (6)

where HΘ = 1
|D|∇

2
ΘL(D|Θ) is the Hessian matrix and is

assumed to be positive definite (PD).

In the Proof 3.2, we also further prove that when ϵ =
− 1

|D| , the parameters of the retrained model Θ′ can be ap-
proximated by Θ− 1

|D|
, and thus we obtain the parameters of

the unlearned model Θ∗. This process is as follows:

Θ′ ≈ Θ∗ = Θ− 1
|D|

= Θ+∆− 1
|D| ,Θ

= Θ+
1

|D|
H−1

Θ ∇ΘL(Df |Θ).

(7)

Using the triplet generated by implicit feedback user-item
pairs together with sampled negative feedback items as the
data in Df to conduct the above computational update, we
are able to remove the user-item pairs’ effect from the model
as well as the learned partial order relationships among items.

However, calculating ∆− 1
|D| ,Θ

directly is still costly in
terms of time and computational resources due to the calcula-
tion of the Hessian matrix and its inverse matrix. We employ
the combination of Hessian-vector product (HVP) [38] and
developed conjugate gradient (CG) [39] to estimate ∆− 1

|D| ,Θ

without explicitly calculating the Hessian matrix and its in-
verse matrix following previous work [40, 41]. That is, let zΘ
denote ∇ΘL(Df |Θ), we first obtain HVP as follows:

HΘzΘ =
1

|D|
∇2

ΘL(D|Θ)zΘ =
1

|D|
∇Θ(∇ΘL(D|Θ)TzΘ),

(8)
where HΘzΘ can be used in the developed CG method for
solving the following optimization problem and thus we have

H−1
Θ zΘ = argmin

t
[
1

2
tTHΘt− zT

Θt], (9)

where the gradient of the optimization objective at its optimal
point t∗ is supposed to be zero, that is, HΘt

∗ − zΘ = 0. Thus
we obtain H−1

Θ zΘ = t∗.

Proof 3.2 Under the objective presented in Eq. (5), we as-
sume it gradually converges to optimum point during the op-
timization process, so that the gradient at Θϵ is zero. Then,
we have

1

|D|
∇ΘL(D|Θ) + ϵ∇ΘL(Df |Θ) = 0. (10)

For the following derivation, we make the assumption that
|D| ≫ |Df | since it is rare to get an almost magnitude of
data moved at the same time in practice. Then the slightly
weighted term ∇ΘL(Df |Θ) does not significantly affect the
parameters, thus Θϵ is close to the original parameters Θ.
Next we can approximate Eq. (5) by applying Taylor expan-
sion at Θ and then we can drive the following formulations:

0 =
1

|D|
∇ΘL(D|Θ) + ϵ∇ΘL(Df |Θ)

+[
1

|D|
∇2

ΘL(D|Θ) + ϵ∇2
ΘL(Df |Θ)](Θϵ −Θ)

+o(Θϵ −Θ),

(11)
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where o(·) denotes the infinitesimal term, 1
|D|∇ΘL(D|Θ) =

0 as it is the optimum and minimum parameter of Eq. (3).
Furthermore, since L(·|Θ) is a cumulative loss function,
Df ∈ D and |D| ≫ |Df |, ∇2

ΘL(Df |Θ) is ignorable com-
pared to ∇2

ΘL(D|Θ). Meanwhile, ϵ is a small value, thus
ϵ∇2

ΘL(Df |Θ) can be dropped. Then, after ignoring o(Θϵ −
Θ), we have

ϵ∇ΘL(Df |Θ) +
1

|D|
∇2

ΘL(D|Θ)(Θϵ −Θ) ≈ 0. (12)

Assuming that the Hessian matrix HΘ = 1
|D|∇

2
ΘL(D|Θ)

is positive definite (PD), thus further we have the following
form, i.e., Eq. (6):

∆ϵ,Θ = Θϵ −Θ = −ϵH−1
Θ ∇ΘL(Df |Θ). (13)

Next, we can choose an adequate value to calculate the
difference between the original model parameters Θ and the
retrained model parameters Θ′ according to Eq. (13). We note
that Eq. (4) can be adapted as follows:

Θ′ = argmin
Θ

|D|
|Dr|

[
1

|D|
L(D|Θ)− 1

|D|
L(Df |Θ)], (14)

where the constant coefficient |D|
|Dr| can be ignored as it does

not affect the process of optimization. Comparing Eq. (5)
with Eq. (14), we have the statement that Eq. (5) is equiv-
alent to retraining if ϵ = − 1

|D| . Then the parameters of the
retrained model Θ′ can be approximated by the unlearned pa-
rameters Θ∗, and it can be obtained by one-step update as
follows:

Θ′ ≈ Θ∗ = Θ+∆− 1
|D| ,Θ

= Θ+
1

|D|
H−1

Θ ∇ΘL(Df |Θ).

(15)

IV. Experiment
In this section, we experimentally verify the effectiveness and
efficiency of UBPR while analyzing its performance in detail.

1. Experimental Setup
In this subsection, we introduce the benchmark datasets, the
evaluation metrics and the compared methods along with the
hyper-parameters settings. All experiments are executed on a
GPU server with NVIDIA RTX A5000.
1) Datasets
We conduct extensive experiments on two real-world public
datasets: MovieLens and Pinterest. Table 1 summarizes the
statistics of the datasets.

MovieLens. This is an explicit feedback dataset con-
tributed by GroupLens containing user ratings and tags for
movies. Different versions of the MovieLens datasets contain
different amounts and scales of users, movies, and ratings.
Here we use the implicit version converted by [42] which

contains one million ratings, where 1 indicates that the user
has rated the item and the opposite is true for 0.

Pinterest. This is an implicit feedback dataset con-
tributed by [43] containing images collected by users on
the Pinterest platform, which is often used to evaluate the
content-based image recommendation task. We use the fil-
tered version created by [42] where only users with at least
20 interactions (pins) are retained. Each interaction indicates
whether or not the user has pinned the image.

Table 1 Statistics of the experimented datasets.
Dataset User# Item# Interaction# Sparsity

MovieLens 6,040 3,706 1,000,209 95.53%
Pinterest 55,187 9,916 1,500,809 99.73%

2) Compared Methods
We take Retraining, the most fundamental and raightforward
method to realize machine unlearning, as the essential base-
line. Furthermore, we compare two other unlearning methods
and the details of baselines are as follows,

• Retrain: Training a model from scratch on the remain-
ing dataset to achieve complete unlearning.

• SISA [16]: It randomly splits the data into shards for
isolated training, then performs average aggregation on
the results of sub-models to yield the final prediction.

• RecEraser [19]: A recommendation unlearning frame-
work, which comprises balanced data partition and
attention-based adaptive aggregation.

3) Evaluation Metrics
The experiment primarily aims to evaluate the efficiency and
effectiveness of the UBPR. Here we can directly compare the
unlearning time with the running time of other methods to
certify the efficiency. For effectiveness, that is, whether or
not the UBPR has achieved the unlearning effect, here we
take the model retrained from scratch as the benchmark for
the effect comparison. We expect UBPR to have comparable
performance of the personalized ranking list with retraining,
which can be evaluated by Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG).

The HR stresses the recommendation accuracy, that is,
whether a user’s preferred item is included within the top K of
the personalized ranking list (short for list@K). The NDCG
aims to evaluate the position of the user’s preferred item in the
list@K, where higher score represents higher rank. Since it
is time-consuming to rank all items for each user, we refer
to previous work [44] that randomly samples 99 uninteracted
items and calculates the above metrics of the preferred item
among these 100 items (99 uninteracted items and the pre-
ferred item itself).

In addition, when comparing the performance of the
two methods, we focus more on the overall performance of
each model, that is, calculating the mean HR and the mean
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Figure 1 The performance of different models on dataset MovieLens under different unlearning ratios.

NDCG based on all users’ list@K, which is more statis-
tically meaningful to illustrate the differences between the
methods. The value of K in the experiment is taken in the
range of {1, 5, 10, 20, 25, 30, 40, 50, 60, 80, 100}.
4) Hyper-parameters settings
When optimizing the original model, we utilize the Adam
optimizer with a batch size of 4096, a learning rate of
0.01, a regularization factor of 0.001, and set the number
of epochs to 50, then saving the model under the epoch
with the highest mean NDCG on list@10 as the original
model. We perform all the experiments with the embed-
ding size equal to 8. For Retrain, SISA and RecEraser, the
parameters settings are consistent with that of the original
model during unlearning. Additionally, we split the data into
5 shards for SISA and RecEraser, where we consider the
ideal hypothesis, i.e., the data to be forgotten exists in the
same shard. Following the RecEraser settings, we split the
data based on user similarity [19]. Next, we unlearn the
{0.01%, 0.015%, 0.02%, 0.025%, 0.03%, 0.035%} of the to-
tal data using different methods, Table 2 shows the size of the
two datasets after preprocessing and negative sampling (sam-
pling 4 negative samples for each interaction), as well as the
sizes of the data to be forgotten under different ratios.

2. Effectiveness Comparison
In this subsection, we present the experimental results of our
proposed unlearning algorithm UBPR and discuss its effec-
tiveness. Figure 1 and Figure 2 illustrate the performance of
different models with different unlearning ratios on the two
datasets, MovieLens and Pinterest, respectively, with NDCG
as the evaluation metric at different K. Here the following
noteworthy findings are drawn.

Table 2 Details of the data to be forgotten at different ratios.
Dataset Size Ratio Size

0.01% 396
0.015% 596

MovieLens 3,976,676 0.02% 792
0.025% 992
0.03% 1,192
0.035% 1,388
0.01% 620
0.015% 908

Pinterest 5,782,488 0.02% 1,216
0.025% 1,516
0.03% 1,820
0.035% 2,120

i) All the unlearning methods can cause some degree of per-
formance damage to the original BPR model, fitting with the
instinct that the reduction of the total training samples results
in the reduced performance of model.
ii) Compared to SISA and RecEraser, the performance of
UBPR model is closeset to that of the retrained model. The
differences of the metric NDCG under different K can be
within 0.01 ∼ 0.03 on dataset MovieLens, and such differ-
ences can be kept within 0.001 ∼ 0.003 on dataset Pinterest,
which verifies the effectiveness of our UBPR model.
iii) For our method, the unlearning effect is highly correlated
with the size and quality of the dataset. The size of Pinterest
is larger than that of MovieLens, and thus the effectiveness
is superior with the same unlearning ratio. Additionally, the
same observation holds true for SISA and RecEraser, as more
data is better for the performance of each sub-model.
iv) As the unlearning ratio increases, our algorithm gradually
deviates from the retrained model, this is especially notice-
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Figure 2 The performance of different models on dataset Pinterest under different unlearning ratios.

able on the dataset MovieLens. This indicates that our model
is amount-sensitive and the amount of the data to be forgot-
ten should be as small as possible, which is consistent with
practical unlearning settings.

Next, to further analyze the effectiveness of the UBPR,
we fix the value of K as 10 and compare different models’
performance. Table 3 illustrates the results towards HR@10
and NDCG@10 of different unlearning algorithms on the
two datasets at different unlearning ratios. It presents this
two metrics for the original BPR model, the retrained model
and the UBPR model, respectively, and denotes the differ-
ence between the UBPR model and the retrained model with
∆. From the experimental results, we can find that the dif-
ference ∆ of HR@10 is ignorable (the order of magnitude is
10−3) for both datasets. But for the NDCG@10, the ∆ on
MovieLens tends to enlarge as the unlearning ratio increases
(it is acceptable within the order of magnitude equal to 10−2),
whereas that on Pinterest can be ignored (the order of magni-
tude is still 10−3). The results further demonstrate the effec-
tiveness of our approach for recommendation models based
on large-scale data.

3. Efficiency Comparison
In this subsection, we compare the running time of different
unlearning methods to study the unlearning efficiency. Simi-
larly, we perform this experiment at different unlearning ra-
tios, the results are presented in Figure 3. we can draw the
following conclusions:
i) UBPR is significantly faster than all the baselines. For
the MovieLens and Pinterest datasets, it speeds up by about
10.0× and 8.0× at all unlearning ratios compared to retrain-

ing from scratch, respectively.
ii) SISA and RecEraser can also effectively improve the un-
learning speed compared to retraining. However, they both
need to store a significant amount of intermediate parame-
ters from training, resulting in a waste of storage resources.
Moreover, splitting the model will inevitably harm the overall
recommendation performance.
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Figure 3 Running time on the two datasets at different ratios.

iii) As the size of the original training dataset increases, all
the methods take more time to conduct unlearning as well
as ensuring desirable performance. Although the unlearning
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Table 3 Results towards HR@10 and NDCG@10 at different unlearning ratios on the two datasets.
Dataset MovieLens Pinterest
Ratio 0.010% 0.015% 0.020% 0.025% 0.030% 0.035% 0.010% 0.015% 0.020% 0.025% 0.030% 0.035%

HR
@10

BPR 0.643 0.643 0.643 0.643 0.643 0.643 0.839 0.839 0.839 0.839 0.839 0.839
Retrain 0.627 0.623 0.619 0.623 0.616 0.615 0.839 0.836 0.838 0.838 0.838 0.838
SISA 0.598 0.594 0.595 0.595 0.595 0.594 0.810 0.811 0.809 0.808 0.810 0.809

RecEraser 0.607 0.606 0.609 0.609 0.607 0.600 0.838 0.839 0.839 0.839 0.838 0.837
UBPR 0.630 0.625 0.621 0.619 0.616 0.614 0.838 0.837 0.837 0.836 0.836 0.836
∆ +0.003 +0.002 +0.002 -0.004 0.000 -0.001 -0.001 +0.001 -0.001 -0.002 -0.002 -0.002

NDCG
@10

BPR 0.369 0.369 0.369 0.369 0.369 0.369 0.510 0.510 0.510 0.510 0.510 0.510
Retrain 0.353 0.354 0.354 0.355 0.352 0.351 0.506 0.506 0.506 0.507 0.506 0.507
SISA 0.334 0.333 0.334 0.335 0.335 0.333 0.480 0.480 0.479 0.478 0.480 0.479

RecEraser 0.342 0.340 0.344 0.341 0.340 0.337 0.508 0.507 0.508 0.507 0.507 0.506
UBPR 0.356 0.352 0.348 0.345 0.340 0.333 0.508 0.507 0.507 0.507 0.506 0.505
∆ +0.003 -0.002 -0.006 -0.010 -0.012 -0.018 +0.002 +0.001 +0.001 0.000 0.000 -0.002

time on Pinterest is typically longer than MovieLens, UBPR
is still the most efficient method.
iv) The running time of retraining, SISA and RecEraser
greatly depends on the size of the remaining dataset and the
number of epochs, while the running time of the UBPR de-
pends on the size of the requested subset to be forgotten,
the size of the original dataset, and the times of optimiza-
tion when approximating the influence function with the CG
method. The experimental results demonstrate that UBPR
strikes a trade-off between accuracy and efficiency in the cal-
culation of influence function.

4. Further Analysis
In this subsection, we further explore the unlearning effect of
our proposed method on MovieLens, demonstrating its effec-
tiveness in unlearning the interacted items and partial order
relationships among items.
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Figure 4 The positional relationship before and after unlearning for user 0
and user 4096.

Visualization of user-item relationships. We first erase a

specific user from our original model using UBPR, where we
unlearn all the items interacted with this user, together with
the sampled negative samples on these items. Since both user
and item embedding matrix of the unlearned model are in the
same latent space, we perform dimensionality reduction con-
verting them to 2-dimensional level by t-SNE. Subsequently,
we present the positional relationship among the unlearned
user, user’s interacted positive items and the sampled nega-
tive ones on low-dimensional space.

Figure 4 shows the results before and after unlearning for
users with ID 0 and ID 4096, respectively, where user 0 has
52 interacted items, user 4096 has 29 interacted items and 4
negative samples were sampled for each interacted item. For
a clear presentation, here we just randomly show three inter-
acted items with the sampled negative items for each user. In
the figure, the red dots denote the user, the little rectangles de-
note the user’s interacted items (positive items), and the little
triangles denote the negative items sampled for the positive
one, where different colors represent different sets of positive
and negative items. The IDs of the users and the interacted
items are illustrated in the legends.

Generally, the higher the user-item score, the closer the
item embedding vector will be to the user embedding vector
in the latent space. BPR is based on the assumption that ob-
served interactions should get higher ranking score than the
unobserved ones, that is, the user should be closer to the pos-
itive items and as far away from the negative ones as possible
in the latent space. As shown in the figure, the user before
unlearning is closer to the positive items and farther away
from the negative ones. Also there are noticeable distances
between the positive and negative items, demonstrating the
partial order relationships between items learned during the
BPR training process. After unlearning the user using UBPR,
the user’s position is offset significantly, and there is no obvi-
ous preference between the user and either positive or nega-
tive items on distance. Conversely, from a statistical perspec-
tive, users are observed to be closer to negative samples while
being more distant from positive samples. Meanwhile, some
positive items also tend to be closer to negative ones. This
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clearly demonstrates that our UBPR method achieves the ob-
jective of unlearning by disrupting the existing partial order
relationships, thereby pulling negative samples closer while
pushing positive samples further away from the target user.

Quantification of user-item relative relationships. To
comprehensively evaluate the effectiveness of our method on
partial order relationships, we propose a quantitative metric
called Positive-Negative Preference Ratio (PNPR) as follows:

PNPR =
1

m

m∑
j=1

[
1

n

n∑
i=1

dnegi

dposj

], (16)

where dpos and dneg denote the distances of the positive
and negative item embedding to the user embedding, respec-
tively. Each user interacts with m positive items and samples
n negative samples for each positive item. PNPR quantifies
how much a given user prefers positive and negative items.
Generally, a higher PNPR indicates a clearer differentiation
between positive and negative samples. Figure 5 illustrates
the PNPR before and after unlearning of the randomly se-
lected users. From the results, it can be seen that users rela-
tively prefer positive items (PNPR>1) before unlearning. In-
stead, users have no significant preference for positive and
negative items after unlearning with either Retrain or UBPR
(PNPR≈1). Additionally, our method achieves nearly consis-
tent effects with Retrain, further demonstrating the effective-
ness of UBPR for unlearning partial order relationships.
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Figure 5 The PNPR before and after unlearning of randomly selected users.

Comparison of unlearning effects on parameters. We
adopt previously used Weight Distance [30] to quantitatively
measure the unlearning effect of our method. The distance
between the parameters of two models helps to further under-
stand the difference in the amount of information between the
models. Here, we take the l2 distance between the parameters
of models as Weight Distance. Figure 6 illustrates the dis-
tance between the original model before unlearning and the
initialized model without any training (O/I), the distance be-
tween the retrained model and the original model (R/O), and
that between other unlearned models and the original model
(S/O for SISA, E/O for RecEraser and U/O for UBPR) under
different unlearning ratios on MovieLens. We can see that
there is a significant model distance of O/I, since the origi-
nal model is trained on the initialized model and captures a

rich amount of information. Both retraining and unlearning
make the model slightly differ from the original model, indi-
cating changes in the amount of information. All unlearning
methods achieve comparable results to retraining at parame-
ter level. Notably, the U/O distances tend to be close to the
R/O distances, which indicates similar changes in the amount
of model information, further demonstrating the unlearning
effect of our proposed UBPR.
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Figure 6 The weight distances between the parameters of models under dif-
ferent unlearning ratios. I,O,R denote the initialized model, origi-
nal model and retrained model, respectively. S,E,U denote the un-
learned model using SISA, RecEraser and UBPR, respectively.

Evaluation under different number of negative sam-
ples. The model can capture the partial order relationships
between positive and negative items due to the negative sam-
pling mechanism, thus enhancing its performance. To that
end, we have further explored the unlearning effectiveness
under different number of negative samples, with results
shown in Figure 7. For model performance, it is optimal when
the number of negative samples is 4. Under-sampling is not
conducive to capturing the partial order relationships among
items, while over-sampling undermines the overall perfor-
mance. For unlearning effect, UBPR performs consistently
with Retrain under different number of negative samples, ev-
idencing the effectiveness and generality of our method.
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Figure 7 The unlearning effectiveness under different number of negative
samples.

V. Conclusion and Future Work
In this work, we propose an efficient and effective unlearn-
ing framework tailored for pair-wise ranking models guided
by influence function. From a theoretical perspective, we an-
alyze how our proposed method eliminates the effect of in-
teractions to be forgotten along with the sampled negative
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items from the model, and also demonstrate that under cer-
tain assumptions, it is effective in line with retraining. We
then conduct extensive experiments to verify the effective-
ness and efficiency of our proposed algorithm UBPR. The re-
sults indicate that the differences of the metric (HR, NDCG)
between UBPR and retraining at different unlearning ratios
on both datasets are mostly within the order of magnitude
equal to 10−3 which can be ignorable because of the train-
ing stochasticity. Moreover, with such close results, UBPR
is about 10.0× and 8.0× faster than retraining on the two
datasets, respectively. Additionally, we further analyze how
the UBPR eliminates the partial order relationships between
items learned during training. By visualizing the unlearning
results after the dimensionality reduction, we notice that the
preferences between users and items, and the partial order re-
lationships between items are blurred. In conclusion, we the-
oretically and experimentally demonstrate the effectiveness
and efficiency of the UBPR and its advantages over several
state-of-the-art models.

There are still a few research directions for future work.
First, despite the obvious advantages of the UBPR over re-
training, more efficient recommendation unlearning algo-
rithms still need to be explored to cope with the situation
where the unlearning requests are frequently submitted. We
think that further improving the calculation techniques of the
influence function or advanced sampling mechanisms [45]
may be a good direction. Besides, recommendation unlearn-
ing reflects the problem of robustness of recommender sys-
tems, and how to build the trustworthy recommender systems
in the future is still a valuable research topic.
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